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Abstract 

 

 

Breast cancers have been uncovered by high-throughput technologies that allow the 

investigation at the genomic, transcriptomic and proteomic levels. In the early 2000s, the gene 

expression profiling has led to the classification of five intrinsic subtypes: luminal A, luminal B, 

HER2-enriched, normal-like and basal-like. A decade later, the spectrum of copy number 

aberrations has further expanded the heterogeneous architecture of this disease with the 

identification of 10 integrative clusters (IntClusts). The referred classifications aim at explaining 

the diverse phenotypes and independent outcomes that impact clinical decision-making. 

However, intrinsic subtypes and IntClusts show limited overlap. In this context, novel 

methodologies in bioinformatics to analyse large-scale microarray data will contribute to further 

understanding the molecular subtypes. In this study, we focus on developing new approaches to 

cover multi-perspective, highly dimensional, and highly complex data analysis in breast cancer. 

Our goal is to review and reconcile the disease classification, underlying the differences across 

clinicopathological features and survival outcomes. For this purpose, we have explored the 

information processed by the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC); one of the largest of its type and depth, with over 2000 samples. A series of 

distinct approaches combining computer science, statistics, mathematics, and engineering have 

been applied in order to bring new insights to cancer biology. The translational strategy will 

facilitate a more efficient and effective incorporation of bioinformatics research into laboratory 

assays. Further applications of this knowledge are, therefore, critical in order to support novel 

implementations in the clinical setting; paving the way for future progress in medicine.  
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